【大学物理】

University Physics

一、基本信息

课程代码: 【2050626】

课程学分:【3学分】

面向专业: 【计算机科学与技术、软件工程、数字媒体技术、健康管理、宝石及材料工艺学、

工程管理】

课程性质:【公共基础课】

开课院系:教育学院(通识教育学院)

使用教材:

教材【大学物理学(力学与电磁学)王登龙北京邮电大学出版社,2020年1月第2版】 参考书目【物理学与人类文明十六讲 赵峥编,2008年版,高等教育出版社。

物理学原理在工程技术中的应用(第四版) 马文蔚主编 2015 年版,高等教育出版社。时间简史 史蒂芬•霍金 2014 年版,湖南科技出版社。】

课程网站网址:

http://mooc1.chaoxing.com/course/208769090.html

先修课程: 【高等数学(上)2100013(6)】

二、课程简介

《大学物理》主要内容有力学、电学和磁学。包括质点运动学、质点动力学、刚体定轴转动、真空中的静电场、静电场中的导体、稳恒电流的磁场、电磁感应。通过本课程的学习,使学生掌握力学和电磁学的基本概念、基本理论和基本规律,能运用物理学知识解释自然科学问题,通过进一步深入学习能够分析和解决专业工程中的遇到的物理问题。同时把课程思政有效地融入其中,培养学生建立辨证唯物主义世界观,养成独立思考和批判精神习惯;培养学生高尚人格、爱国情怀、激发民族自豪感和报国热情;培养学生求实创新精神和科学美感。

三、选课建议

适合理工类本科专业,在一年级第二学期学习,要求有高等数学的基础。

四、课程目标/课程预期学习成果

序号	课程预期 学习成果	课程目标 (细化的预期学习成果)	教与学方式	评价方式
1	L012	自觉遵守校纪校规。	课堂授课	课堂表现、作 业习题
2	L021	结合专业知识,能够将自然科学运用到工程 问题的恰当表述中。	课堂授课	闭卷考试、期 中测试
3	L032	应用书面形式,撰写调查报告,阐释自己的 观点,有效沟通。	课堂授课	调查报告

五、课程内容

单元 知识点 能力要求	教学重点与难 点
-------------	-------------

1. 力学	位度 速度 动定势恒恒转量 使 大加、牛定、化理,作定,从,从一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	1. 理解位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量, 学会运用直角坐标系、自然坐标系, 计算分析质点在平面内运动。 2. 理解牛顿定律及其适用条件。 3. 理解质点的动能定理和动量定理, 理解功的概念, 学会计算直线运动情况下变力的功; 理解保守力作功的特点及势能的概念, 理解机械能守恒定律、动量守恒定律, 学会运用守恒定律分析问题。 4. 理解刚体绕定轴转动的转动定律和刚体在绕定轴转动情况下的角动量守恒定律, 学会运用能量守恒定律分析刚体的有关问题。	1. 物理量的矢量性 2. 自然坐标系下运动的描述(微分) 3. 各定律的综合应用 4. 分析计算刚体的转动
2. 电学	电场强度和电势、电场强度叠加原理和电势叠加原理、高斯定理和环路定理、静电平衡条件	1. 知道静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理,分析一些简单问题中的电场强度和电势。理解静电场的规律:高斯定理和环路定理。学会运用高斯定理分析电场强度。 2. 理解导体的静电平衡条件,运用导体平衡条件分析有关静电场中球形导体的有关问题。	1. 电场计算 2. 高斯定理 3. 静电平衡 条件 4. 电场强度和 电势的关系
3. 磁学	磁感应强度、毕 奥-萨伐尔定 律、高斯定理和 安培环路定理、 电磁感应定律和 楞次定律	1. 掌握磁感应强度的概念,理解稳恒磁场的规律:毕 奥-萨伐尔定律、磁场高斯定理和安培环路定理。学会 运用安培环路定理分析简单磁场的磁感应强度。学会 分析计算带电体在简单磁场中的受力。 2. 知道电磁感应定律和楞次定律。	1. 毕奥-萨伐 尔定律、高斯 定理和安培环 路定理 2. 带电体在 磁场中的受力

六、评价方式与成绩

总评构成(1+X)	评价方式	占比
1	闭卷考试	50%
X1	期中测试	20%
X2	课堂表现、作业习题	20%
Х3	调查报告	10%

撰写: 岳春晓

系主任审核: 岳春晓

日期: 2023年6月6日